Mathematical Statistics

Test 1

Spring 2006

Name:....

16+(4+4+4+4+2)+20+24+(4+4+4+2)+4+4=100

- Let the joint p.d.f. of X and Y be defined by f(x, y) = c, $x^2 \le y \le 1$, $0 \le x \le 1$. Find
 - (a) the value of c.
 - (b) $f_1(x)$, the marginal p.d.f. of X.
 - (c) $f_2(x)$, the marginal p.d.f. of Y.
 - (d) $P(X \ge 0.5, Y \ge 0.5)$.

- Assume that X and Y have a bivariate normal distribution with $\mu_X=22.7$, $\sigma_X^2=17.64$, $\mu_Y=22.7$, $\sigma_Y^2=12.25$ and $\rho=0.78$. Find
 - (a) P(18.5 < Y < 25.5).
 - (b) $E(Y \mid X)$.
 - (c) $Var(Y \mid X)$.
 - (d) P(18.5 < Y < 25.5 | X = 23).
 - (e) Are X and Y independent? Explain.

- Suppose X and Y are continuous random variables with joint p.d.f. $f(x,y) = 60x^2y$ for x > 0, y > 0, x + y < 1, and zero otherwise. Find the following:
 - (a) Marginal distribution of X.
 - (b) Conditional p.d.f. of Y given X.
 - (c) P(Y > 0.1 | X = 0.5).
 - (d) E(Y | X = x).
 - (e) Var(Y | X = x).

- Suppose X and Y are continuous random variables with joint p.d.f. f(x, y) = (x + y), 0 < x < 1, 0 < y < 1, and zero otherwise. Find each of the following: (Use symmetry to save time)
 - (a) $f_1(x)$ and $f_2(y)$.
 - (b) μ_x and μ_y .
 - (c) σ_x^2 and σ_y^2 .
 - (d) E(XY).
 - (e) Cov(X,Y).
 - (f) ρ .

Suppose that the random variables X and Y have the following joint p.d.f.:

$$f(x, y) = 4xy$$
, for $0 \le x \le 1$, $0 \le y \le 1$.

Also let U = X and V = XY.

- (a) Draw the support of X and Y, and that of U and V.
- (b) Determine the joint p.d.f of U and V.
- (c) Find the marginal distributions of U and V. (Marginal distribution of V may look a little strange.)
- (d) Are U and V independent?

You may give up points and ask me to show you how to draw the support of U and V.

X and Y are independent random variables with common m.g.f.. function $M(t) = \exp\left(\frac{t^2}{2}\right)$. Let W = X + Y and Z = Y - X. Determine the joint m.g.f $M_{W,Z}(t_1,t_2)$ of W and Z.

Let $U_1 \sim \chi^2_{(5)}$ and $U_2 \sim \chi^2_{(3)}$ are two independent χ^2 random variables with respective degrees of freedom 5 and 3. Define a random variable which has a F distribution. What are the numerator and denominator degrees freedom?

RV:

Numerator d.f.

Denominator d.f.